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Fluid-fluid transitions of hard spheres with a very-short-range attraction
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Hard spheres with an attraction of range a tenth to a hundredth of the sphere diameter are constrained to
remain fluid even at densities when monodisperse particles at equilibrium would have crystallized, in order to
compare with experimental systems that remain fluid. They are found to have a fluid-fluid transition at high
density. As the range of the attraction tends to zero, the density at the critical point tends toward the random-
close-packing density of hard spheres.

PACS numbg(s): 82.70.Dd, 61.20.Gy

[. INTRODUCTION dal spheres show that they crystallize readily, at least as long
as the attraction is not too strong, polydisperse colloidal
Argon forms a liquid because argon atoms attract eaclspheres often never crystalliz¢] and the presence of a very-
other and these dispersion attractions between the atoms &fort-range attraction makes the crystalline phase even more
relatively long ranged; the volume over which one argonsensitive to polydispersity5]. By “polydisperse” spheres
atom attracts another is comparable to the volume one argdie mean that the spherical particles do not all have the same
atom of the pair excludes to another. If we could reduce théliameter but have a range of diameters. Our theory is a per-
range of the attraction between argon atoms then the liquigHrbation theory about a hard-sphere fluid and so completely
phase would disappear from the equilibrium phase diagrari€glects the crystal. Thus we will not need to explicitly apply
when the volume over which the atoms attract was of orde@ constraint within the theory. We do, however, need to as-
one-tenth of the volume they exclude to each other. Ofume that it is possible to apply a constraint to the system
course, we cannot change the interaction between argon dbat has almost no effect on the fluid phase but completely
oms but there are well-established colloidal systems whoserevents crystallization.
interactions we can change. The liquid phase disappears
from the equilibrium phase diagram because the fluid-fluid Il. THEORY
transition is preempted by the crystallization of the fluid. . . ,
But, although the fluid-fluid transition has disappeared from W€ chose a simple potential with a hard-sphere core and
the equilibrium phase diagram of monodisperse particles, ex@n attraction in the form of a Yukawa function. The hard-
periments often do not observe crystallization, presumablyPhere+ Yukawa potential is a spherically symmetric pair
due to a combination of a large free energy barrier to crysPotential so the interaction energy depends only on the
tallization and the destabilizing effect of small amounts ofSeparatiorr of the centers of the two particles,
polydispersity on the crystalline phase. As crystallization
does not occur it does not preempt the fluid-fluid transition, v(r)= > r<o 1)
which is therefore observable. With this in mind, we study —e(oln)exdk(1l—rlo)], o<r,
the behavior of spherical particles with a short-range attrac-
tion which are constrained to remain fluid. We study attracwhereo is the hard-sphere diameter aeds the energy of
tion ranges down to a hundredth of the diameter of the haréhteraction for touching spheres. With this potential the ther-
core—this is what we mean by very-short-range attractionanodynamic functions depend on the reduced temperature
We find that as the range decreases the density at the criticall/e and the reduced density=(N/V)(7/6)a*, which is
point increases to very high values. For a sufficiently shorthe fraction of the volume occupied by the cores of the par-
range the critical point lies above the density of the kineticticles.k, T, N, andV are Boltzmann’s constant, the tempera-
glass transition observed in experiments on hard-sphere-likieire, the number of particles, and the volume, respectively.
colloids. This will make direct observation of the phase sepa- We require a free energy for this potential that is accurate
ration difficult or impossible; however, this phase transitionup to very high densities, up to near random close packing,
may still influence nonequilibrium behavior such as the for-which is at a volume fractiomp=0.64—0.65[6,7]. Speedy
mation of glasses and gels. [7] has obtained, from computer simulation data, an accurate
Here we will not consider the crystalline phase at all. Ourequation of state of hard spheres up to random close packing.
results are for a system of particles that is constrained tdhis enables us to use a perturbation theory, i.e., to start from
remain fluid at all temperatures and pressures; see Refthe Helmholtz free energy in the infinite temperature limit of
[1-3] for a discussion of the application of constraints toour model, which is hard spheres, and add on the energy as a
stabilize a phase that would otherwise be metastable or urmperturbation. Then our expression for the Helmholtz free en-
stable. Although experiments on near-monodisperse colloiergy per particlea at a temperatur@ and a volume fraction

nis
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whereayg is the Helmholtz free energy of hard spheness 0.60 - - '
the energy per particle, and=1/kT. As the energy of a
fluid of hard spheres is zer@a,s= — sus/k, wheresyg is 0.58 100
the entropy per particle of hard spheres, which is, according 0.56 |
to Speedy[7,8],
W 054 8
SHs -1 :
Tzl—lnp+CIn(7yo— 7)+Sp+ N InNg(70), (3 0.52 g

. 0.50 |
whereC=2.8, Sy=—0.25, andN, is

Ng(70) = exp{N[ @~ y( 70— 7m)?1}, (4)

0.46 L\ L4l
wherea=2, y=193, andy,,=0.555. In these equations the 020 0.25 030 0.35 0.40 0.45 0.50 0.55 0.60
value of 5o at any density is determined by minimizing the n

free energy at that density. This form of the free energy is G, 1. The fluid phase diagrams in the temperature-density
optimized for the dense fluid. Essentially, if we start from pjane, for four different ranges. The curves are, from left to right,
any configuration of the dense fluid and begin to expand alfor inverse ranges=7, 20, 40, and 100. In each case the curve
the spheregso increasing the volume fractipthen at some encloses the fluid-fluid coexistence region and the critical point is
point the spheres will touch and then the spheres cannot hige highest point on the curve.

expanded further. At this point the volume fraction sg;

this can be seen from the logarithimic term in &8), which  most accurate for long-range attractions. The theory is
diverges wheny= 7. If we start from different configura- closely related to simple theories of a crystal of spheres with
tions then after expansion of the spheres we may end up wit§ short-range attraction such as that of Daaneual. [14].

a different value ofyo. The larger the differencgo— 7 then  These theories should be as applicable to a fluid near random
the more room the spheres have, which increases the eftose packing as they are to a crystal. The crystal lattice
tropy. However, simulations show that there are few arrangegnters a theory such as that of REf4] only by fixing the
ments of the spheres that have a largg therefore there is  close-packing density and the number of nearest neighbors.
an entropic cost to being in an arrangement with a lajge |t relies on the fact that in a dense crystal each sphere just
Ng(70), Eq.(4), is essentially the number of ways of arrang- rattles around in a cage formed by its nearest neighbors. But
ing spheres such that the maximum possible volume fractiohis is also true in a glass and is true except for infrequent

is ng; it is maximal atny=7,. The competition between rearrangements in a very dense fl{iflg1].
the third and fifth terms in E(:3) then determines the value

of 5q. As the spheres touch whep= 7, and if we assume
that the expansion is isotropic, then the separatioof . RESULTS
spheres at a givery and 7 is

0.48

Results for four short ranges are plotted in Fig.81 A
bla=(ny/7)*3 (5) simple liquid such as argon is reasonably well modeled by an
0 ' attraction of inverse range=1.8[12]. The results are for
just as in a crystal. The energy of attraction is approximatednverse ranges up to two orders of magnitude greater. The
by the energy of interaction of each sphere with its six neighnotable feature is that the critical densities and the densities

bors[6] at a separatio of the liquid phase are high and move to higher density as
the range decreases. At high density the particles are pushed
u=3v(b)=3v((7e/7)*. (6)  together until they are within range of the attraction. This
occurs at separations between the surfaces of the spheres
As the energy depends opy, the total free energy, E@2), —o=0(o«™1). With the particles just within range of the

iS minimized to obtainyg at each density and temperature. attraction there is a clear energetic driving force toward

Guides to the accuracy of our free energy are obtained bphase separation: the fluid lowers its energy at fixed overall
comparison with existing simulation data. Fer=7, Hagen density by some of the fluid condensing into a dense fluid
and Frenkel[9] find a fluid-fluid critical point atkT/e  where all the spheres are well within the range of the attrac-
=0.41, »=0.26, whereas we predi&T/e=0.54, =0.30. tion of their nearest neighbors. This is just what was ob-
The agreement is fair although not quantitative and we exserved by Bolhuis, Hagen, and Frenk&L] in the fcc crys-
pect our theory to do better at higher densities. Applying artal. In the absence of the crystalline phase, due to
approximation of the type Eq6) to a face-centered-cubic polydispersity perhaps, the transition simply shifts over to a
(fcc) crystal [10] yields an fcc-crystal—fcc-crystal critical fluid-fluid transition, and it occurs at a lower density due to
point whenx=100 atkT/e=1.1, »=0.69. Bolhuis, Hagen, the fact that the random-close-packing density, which is the
and Frenke[11] using computer simulation and perturbation maximum density of amorphous spheres, is lower than the
theory predictkk T/e=0.70, »=0.71. Again, there is fair but maximum density of spheres achievable in an fcc crystal.
not quantitative agreement. Because of the smaller number of neighbors in the dense

We should note that our theory, although a perturbatiorfluid as compared to the crystal, the transition shifts to a
theory, differs markedly from the conventional high tem-lower temperature, but in both cases the critical temperature
perature expansions used to study liquid8]. These are varies little with changing range.



PRE 61 BRIEF REPORTS 6021

We predict a critical point at a density that increases aspproximation is qualitatively wrong for very dense fluids
the range decreases and at a temperature which is roughlyhere the spheres are very close together but a short-range
constant. Although we cannot perform calculations at zerattractions favors precisely these configurations. We there-
range, k=, extrapolation of our results together with the fore suggest that its predictions be treated with caution.
results of Bolhuis, Hagen, and Frenkéfl], who were able In summary, the present theory predicts a fluid-fluid tran-
to study the zero-range limit in the crystal, suggests that irsition that is always aé/kT=0(1) and occurs at a density
the zero-range limit there is a fluid-fluid critical poiatthe  that approaches that of random close packing as the range
random-close-packing density andedk T=0(1). approaches zero. The PY approximation predicts a fluid-fluid

Baxter[15] solved the Percus-YevidlPY) approximation transition in the zero-range limit, which is at quite low den-
for hard spheres with a zero-range attractier; <, and an  sity, ande/kT—o. We should note that these two predic-
infinite reduced well deptle/kT—. He defined a param- tions are not incompatible; it is possible that there are two
eter 7, which is related to the second virial coefficiBy by  fluid-fluid critical points. The present theory is restricted to

L - e/kT=0(1) and so cannot describe fluids with very-short-

=32(1-B,/B3Y) ", (7)  range attractions and smailwheree/kT>1. Thus the fact

HS - . . that it does not predict another fluid-fluid transition at lew
whereB;” is the second virial coefficient of hard spheres. 54 10w density for very-short-range attractions is not evi-

This is an extreme model and Stell has shown that the fluigience that there is no transition there. Ultimately, computer
phase is unstable afil nonzero densities for finite [16].  simulations or much more accurate theories will be required
Above we considered/kT=0(1), for which 7—x ask tg prove whether or not either prediction is correct.

—0. Stell[16] showed that in the zero-range limit the virial
expansion is pathological. See Rdfk1,16—18 for the equi-
librium phase diagram in the zero-range limit. Within the PY
approximation there are two routes to the thermodynamic In conclusion, we have determined the phase diagram of
functions. Both routes incorrectly predict a stable fluid; thushard spheres with an attraction with a range of order 0.1 or
the PY approximation is qualitatively wrong for the equilib- 0.01 of the hard-core diameter, which are constrained not to
rium behavior. However, if the nucleation rate of the crys-crystallize. The fluid-fluid transition persists, according to
talline phase is very low even for an infinite reduced wellour approximate theory, for all ranges of the attraction. As
depth then the fluid will be metastalji] and the predictions the range decreases the density at the critical point increases
of the PY approximation may be valid for this flifi#i9]. The  and can become very high near the random-close-packing
model is still an extreme one/KT is divergent, and the PY density of hard spheres. As the density is so high, observing
approximation is an uncontrolled one, so it is difficult to it will be difficult as the dynamics are very slow at these
place much faith in its predictions. The two routes both pre-densities; the densities can exceed that of the glass transition
dict fluid-fluid critical points. If the compressibility route is of hard spheres. Due to these slow dynamics a glass-glass
used, the critical point is at the low volume fractiap  transition may be observed instead of a fluid-fluid transition,
=0.12 and atr=0.098, whereas via the energy route thebut again it may be impossible to observe directly. The dif-
prediction isyp=0.32 andr=0.12[20]. The prediction of the ficulty in observing fully equilibrated coexistence does not
compressibility route in particular is surprising. Simulationsmean that the transition has no observable consequences. Out
find a critical density that increases as the range decreasasf. equilibrium systems tend to head toward equilibrium, and
As we noted above, fox=7 Hagen and Frenk¢®] found a  even if they do not reach equilibrium their final state may be,
critical volume fractionp=0.26, twice the value of a van der roughly speaking, the point on the path to equilibrium where
Waals fluid. Note that the PY approximation predicts a presthe dynamics stop. One final point is that as the range de-
sure that diverges only ap=1; it is qualitatively wrong creases the critical point, with its associated large fluctua-
even for the fluid of hard spheres at densities near randortions and critical slowing down of the dynamig21], will

close packing. Because of this the PY approximation campproach the kinetic glass transition. What effect this will
never predict a transition at random close packing. The PYave on the kinetic glass transition is unknown.

IV. CONCLUSION
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